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MagNav.jl contains a full suite of open-source 
MagNav-related tools written in Julia

• Import or simulate flight path & INS data
– Open-source data via artifacts

• Map functions
– KNN fill-in, upward & downward continuation, …

• Aeromagnetic compensation models
– Tolles-Lawson, online, NN-based

• Navigation algorithms
– EKF, MPF, neural EKF

(obligatory plug)

https://julialang.org/ 

https://github.com/MIT-AI-Accelerator/MagNav.jl

https://julialang.org/
https://github.com/MIT-AI-Accelerator/MagNav.jl
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Mainstream examples of knowledge-informed AI

1A. et al., “Plenoxels: Radiance Fields without Neural Networks,” arXiv, 2021, doi:10.48550/arXiv.2112.05131.
2M. Genzel, I. Gühring, J. Macdonald, & M. März, “Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning,” arXiv, 2022, doi:10.48550/arxiv.2206.07050.

trained in 
minutes,
real-time 
inference

won AAPM 
data challenge 
by an order of 
magnitude

Knowledge-informed AI: knowledge-guided/constrained deep learning approaches promise appealing 
performance gains (accuracy, generalizability, explainability, efficient use of resources)

• Neural Radiance 
Fields (NeRF) or 
Plenoxels1, in 
computer vision

• Inverse problems for 
medical imaging 
using “data 
consistency”2
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Knowledge-informed AI for magnetic navigation

Conventional approach toward extracting Earth’s 
magnetic field from total magnetic field fails with 

noisy sensor readings → AI augmentation
scalar magnetic 

anomaly map 

sense noisy data 
(magnetic, 

inertial, etc.)

initial 
condition

repeat

(fly)

remove 
corrupting factors

compare and 
update location

compensate

navigate

Positioning in GPS-denied environments via 
Real-Time Magnetic Navigation Process

*Since 1950s, the Tolles-Lawson model has provided a means for removing a corrupting aircraft magnetic field from a total magnetic field measurement

Knowledge-informed AI approaches leverage the conventional model while learning from data

• Core field ~50,000 nT

• Temporal variations ~10 nT

• Anomaly field ~100 nT

• Platform effects
→ geo-survey <10 nT
→ fighter jet >1000 nT

Observable fields 
(Tolles-Lawson model*)

• Permanent
• Induced
• Eddy
Transient fields
• Comms
• Radar
• Lights, etc.

Magnetic Signal Sources
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Knowledge-informed approaches for MagNav

Developed each approach to compare knowledge integration across different integration points

neural network

 knowledge-informed dataset

knowledge in architecture 
and/or weights of network

loss function modified 
according to knowledge

informed learning algorithm

neural network

learned-model consistency check

 

 

 

Use TL to extend expensive flight 
data for rare sensor actuations

Modify vanilla NN architecture to 
embed TL terms

Incorporate the TL terms into the 
loss function and back-propagate 
through TL-based architecture

Impose TL-based bounds during 
inference

TL: Tolles-Lawson

knowledge-informed architecture
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Knowledge-informed architecture 

• Approach: embed Tolles-Lawson model 
directly into the architecture
– Julia enables auto-differentiation over 

arbitrary parameters (not just NN weights)

• Hypothesis: building on linear model 
should enable rapid learning (using less 
training flight time) and explainability

• Experimental setup:
– Randomly select 20 of 25 flight lines from 

the training data
– Test on 7 navigable, held-out flight lines 

(200 training runs per architecture)

physical model 
(Tolles-Lawson) neural network

estimate of 
corrupting factors

NN-corrected 
estimate of 
corrupting 

factors 

inferred correction 
vector

+

truth 
data

NN loss 
(during 

training)

operational
magnetometer readings

training
magnetometer readings 

NN-assisted Tolles-Lawson model plays to the strengths of both compensation approaches
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Knowledge-informed architecture learns both 
linear & nonlinear compensation portions

Bx,By,Bz

-

hidden layer(s)

W

b
Σ f

output layer

W

b
Σ fdataaux BNN

Bt

loss
MSE

additive scalar correction

BEarth

fluxgate

-

𝛃perm

𝛃ind

𝛃eddy

Bperm

Bind

Beddy -

𝛃perm, 𝛃ind, 𝛃eddy, 
updated during 

training, similar to 
W, b

Tolles-Lawson
(vector form)

✕

✕

-

||  ||
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In 200 train/test experiments, the KI architectures typically are more accurate with less data

knowledge-informed architecturevanilla neural network

Knowledge-informed architecture results
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Knowledge-informed architecture result trendlines

• In general, this informed 
architecture achieves 
lower compensation error 
for <1 hr of flight data
– Operational relevance: 

model could be calibrated 
in as little as 30 min of 
data-collect

• Gains diminish as more 
training data is made 
available (>2 hr)
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Knowledge-informed approaches for MagNav

Developed each approach to compare knowledge integration across different integration points

neural network

 knowledge-informed dataset

knowledge in architecture 
and/or weights of network

knowledge-informed architecture

loss function modified 
according to knowledge

informed learning algorithm

neural network

learned-model consistency check

 

 

 

Use TL to extend expensive flight 
data for rare sensor actuations

Modify vanilla NN architecture to 
embed TL terms

Incorporate the TL terms into the 
loss function and back-propagate 
through TL-based architecture

Impose TL-based bounds during 
inference

TL: Tolles-Lawson
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Knowledge-informed dataset

• Flight data is expensive to collect, and there are no obvious symmetries to exploit

• Hypothesis: the Tolles-Lawson model can enable data augmentation on a similar flight trajectory

• Experimental setup: select navigable training lines and consistently recompute the compensated and 
uncompensated sensor data using a Taylor expansion for data augmentation

example real and displaced flight trajectory example real and informed sensor data
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KI dataset + KI architectures results

• For very limited training data 
(<30 min), KI dataset can help
– 2 of 7 flight lines show marked 

improvement, 2 others some 
improvement, none for the 
remaining 3

– In other results, using over 1 hr 
of data (not shown), KI dataset 
had little to no effect

• KI architectures on this limited 
data did pretty well

• KI dataset + KI architecture 
generally has best performance



14

Additional outcomes and tech transfer

Model Magnetic Field Error 
[nT]

Navigation Error 
[m]

Tolles-Lawson* 134 149
Vanilla NN 67 116
Tolles-Lawson + NN 55 74

• Approach allows for same-flight 
calibration and compensation

• KI architectures also require less 
training energy with early stopping

• Explainability (example at left) helps in 
understanding which components are 
contributing to the aircraft signal

Pseudo Real-time Error Correction Performance 

TL: Tolles-Lawson
NN: neural network
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KI approaches have been integrated into 
MagNav.jl1,2 and publicly released

1https://github.com/MIT-AI-Accelerator/MagNav.jl 
2https://magnav.mit.edu/ 

Knowledge-informed learning approaches for airborne magnetic anomaly 
navigation, paper in preparation for Journal of the Institute of Navigation (ION)

GPS: Global Positioning System
EKF: extended Kalman filter

https://github.com/MIT-AI-Accelerator/MagNav.jl
https://magnav.mit.edu/
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Example transients from strobe lights

7 “excursions” are difficult to predict
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Online knowledge-informed architecture shows potential 
for improved navigation performance

neural network 
weights

Tolles-Lawson
PLSR
KI
Online KI

online
knowledge-informed

architecture

For reference: INS drifts ~400 m
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Current & future data collections & collaborations

• SGL flight data collection #2: public data release (late 2023)

• SGL flight data collection #3: NV diamond magnetometer & tensor gradiometer

• USAF transition: integrating with flight hardware & real-time demonstration

• Collaborations with AFIT, AFRL, & industry

• Open challenge problem: https://magnav.mit.edu/ 

https://magnav.mit.edu/

