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Magnetic Navigation - An Alternative to GPS Navigation FSi

* Robust aerial navigation without GPS is challenging;

* Alternative navigation systems for airborne use are often
limited by where and when they can operate (e.g., terrain
following systems cannot operate over oceans; star-
tracker and computer-vision systems depend on weather
and daylight)

* The Earth’s magnetic anomaly field is globally available
at all times, which has the potential to overcome many of

Dr. Aaron Canciani, AFIT Dr. John Raquet, AFIT the limitations and can be exploited for non-GPS based

aerial navigation.
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Earth’s Magnetic Field

Generated from inside the earth:

* Core field - 20-60 mT: dominant, responsible for the working of
compasses

* Anomaly field - about 100 nT: due to the permanent or induced
magnetization of the rocks in the earth's crust

Key feature of the anomaly field:
* The strength of the anomaly field depends on the location —
possible for positioning and navigation

*  When collected from, e.g., an airplane, the anomaly field is
effectively a time series signal

Generated outside of the earth:

* Temporally varying field - about 10 nT: from the ionosphere,
magnetosphere, and the coupling currents between the two

NASA Earth Observatory, “Measuring Earth’s Magnetism,” 2014.
https://earthobservatory.nasa.gov/images/84266/
measuring-earths-magnetism

i

U.S. Geological Survey, “Magnetic anomaly maps and data for North
America,” 2021. https://mrdata.usgs.gov/magnetic/



How to Obtain the Earth Magnetic Field §e from Aircraft Measurements? %‘

- - -

Total measured field: B,,, = B, + Baircrart = Beore T Banomaly + Btw + Baircrast

l

* B_.ore - calculated from the International Geomagnetic Reference Field (IGRF) coefficients
* B, - mostly from the diurnal variations and space weather — can be removed using ground-based
reference measurements

-

* Bgircrasi- total field generated by the aircraft

l

* Calibration: Tolles-Lawson (TL) model
to estimate §aircraft

(@) Tail stinger
4 Mag 5 \
Mag 3 \ —— * Applied to the reading of the
= magnetometer at the tail stinger — real
value of the earth field §e
X \ - - -
. S * Subtracting B, and B, from B, gives

Mag 2 the anomaly field §an0maly



Tolles-Lawson Model

Fsi

TL model: the magnetic field generated by the body of the aircraft as three magnetic moments:

N =i

magnetic field.

Permanent magnetic moment: the nearly constant magnetic moment of the entire aircraft.
Induced magnetic moment: the magnetic response of the magnetically susceptible materials in the aircraft to the earth

3. Eddy current moment: caused by the temporal variations of the earth magnetic field due to the motion of the aircraft.

BTL — Bperm + Bind + Beddy
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|§e, TL| — |-§m| — BTL

ool

X1, ', X1g: 18 constant coefficients that can be
calculated after a calibration flight

TL model works well only when the flying aircraft
1s in a magnetically quiet mode and all the
magnetometer measurements are performed on a
tail stinger outside the cabin

Often this is not the case!



Estimate of Earth’s Anomaly Magnetic Field

e Recall:

-

Be = Beore + Banomaly + By

e TL calibration gives an estimate of §e:

D

—

e — Be,TL

S5

. §Core - calculated with the International Geomagnetic Reference Field (IGRF) coefficients

* B, - mostly from the diurnal variations and space weather — can be removed using ground-based
reference measurement

- —

- -
- Banomaly ~ Be,TL - Bcore — Btv

e TL calibration works well only when the flying aircraft is in a magnetically quiet mode and all the
magnetometer measurements are performed on a tail stinger outside the cabin.

e For normal flights, these conditions are not met.

* Magnetic signals collected inside the cockpit are noisy due to the electronics — a weak signal
embedded in overwhelmingly strong noise!

* Use TL model to obtain the ground truth for training neural networks



Data Source: USAF-MIT Artificial Intelligence Accelerator

README.md

Signal Enhancement for Magnetic Navigation Challenge
Problem

gitlab

This is a repository for the signal enhancement for magnetic navigation (MagNav) challenge problem, which was
introduced at JuliaCon 2020. The high-level goal is to use magnetometer (magnetic field) readings recorded from
within a cockpit and remove the aircraft magnetic noise to yield a clean magnetic signal. A detailed description of the
challenge problem can be found here and additional MagNav literature can be found here.

Round Start End Winning Team

1 26-Jul-20 28-Aug-20 Lir?g»Wei Kong, C'hem_l;—Zhen V\{an'g, and Ying-Cheng Lai
Arizona State University (submission)

2 24-Sep-20  31-Jan-21

Introduction Videos

® Magnetic Navigation Overview
e Challenge Problem Description

® Challenge Problem Datasets

Starter Code

A basic set of starter Julia code files have been provided within the src folder. This code is largely based on work
done by Major Canciani. This code has only been tested with Julia 1.4 and 1.5. A sample run file is located within the
runs folder, which includes downloading the flight data via artifact ( Artifacts.toml ). Details of the flight data are
described in the readme files within the readmes folder. The flight data can also be directly downloaded from here.

Team Members

The MagNav team is part of the USAF-MIT Artificial Intelligence Accelerator, a joint collaboration between the United
States Air Force, MIT CSAIL, and MIT Lincoln Laboratory. Current team members include:
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Data Structure %

* Source: Open Call for developing machine-learning approaches to signal enhancement for magnetic navigation
(MagNav) Challenge organized in 2020 by the Air Force-MIT Artificial Intelligence Accelerator
* Four other magnetometers placed at different positions in the cabin

* 45 available flight lines
Examples of results from TL calibration:
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Examples

TABLE II. Line number summary for flight 1003

Fsi

Line number Description Training length (s) Validation /Test length (s)
1003.02 Eastern Ontario Free-Fly 400m 2246.5 748.8
1003.03 Climb to 800m 61.3 20.4
1003.04 Eastern Ontario Free-Fly 800m 2877.7 959.2
1003.05 Transit at 800m 246.7 82.2
1003.06 Descend to 400m 83.5 27.8
1003.07 Transit to Renfrew Free-Fly 58.9 19.6
1003.08 Renfrew Free-Fly 400m 2581.9 860.6
1003.09 Climb to 800m 82.3 27.4

TABLE V. Line number summary for flight 1006

Line number Description Training length (s) Validation /Test length (s)
1006.03 Climb to 17,000ft 448.3 149.4
1006.04 Compensation maneuvers at 17,000ft 2547.7 849.2
1006.05 Descent to 10,0001t 317.5 105.8
1006.06 Compensation maneuvers at 10,000ft 369.1 123.0
1006.07 Transit/Descent to Eastern Ontario 732.1 244.0
1006.08 Compensation maneuvers in Eastern Ontario at 400m 479.5 159.8




Additional Features Collected During Flight

Fsi

61 other features recorded at the same time by some current and voltage sensors and readings from the INS system

Examples
of some
“most
important”
features:

Z.-M. Zhai, M. Moradi, L.-W.
Kong, and Y.-C. Lai, “Detecting

weak physical signal from noise:

A machine-learning approach
with applications to magnetic-
anomaly guided navigation,”
Physical Review Applied 19,
034030, 1-18 (2023).

TABLE I. Importance ranking of the features selected by a

greedy algorithm

Features | Units Description
flux_c_t nT Flux C: fluxgate total
cur_ac_lo A Current sensor: air conditioner fan low
ins_alt m INS computed elevation
flux_c_z nT Flux C: fluxgate z axis
flux_a_t nT Flux A: fluxgate total
vol_back p \Y% Voltage sensor: resolver board(+)
vol.back.n| 'V Voltage sensor: resolver board(-)
ins_lat rad INS computed latitude
cur_com_1 A Current sensor: aircraft radio 1
flux c_y nT Flux C: fluxgate y axis
vol_acpwr V Voltage sensor: aircraft power
ins_wander| rad INS computed wander angle
cur_flap A Current sensor: flap motor
vol_bat_2 A Current sensor: battery 2
ins_roll deg INS computed aircraft roll

Fluxgates B, C,
D along x, y, and
Z axes have been
used in TL
calibration (Air
Force — MIT
MagNav
Challenge)



Example of Estimated Earth’s Magnetic Field Map in a Flying Region
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Additional Features — How Many are Needed?

( a) I train

validation

201

Determining the number of m
features as additional input 4
signals (greedy algorithm) 5

0 10 20 30 40 50 60
Features



Machine Learning Scheme 1: Reservoir Computing

REPORT

Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in
Wireless Communication

Herbert Jaeger”, Harald Haas
+ See all authors and affiliations

Science 02 Apr 2004:

Vol. 304, Issue 5667, pp. 78-80
DOI: 10.1126/science.1091277

PHYSICAL REVIEW LETTERS 120, 024102 (2018)

Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A
Reservoir Computing Approach

Jaideep Pathak,"z" Brian Hunt,'H Michelle Girvan,”‘2 Zhixin Lu,l"‘ and Edward Ott"*®

Controller:

* Driving

A bifurcation parameter p
Drift due to climate change

\ 4
Controller f(t)

Open loop operation
for training

PHYSICAL REVIEW RESEARCH 3, 013090 (2021)

Machine learning prediction of critical transition and system collapse

Ling-Wei Kong ©,! Hua-Wei Fan©,? Celso Grebogi,* and Ying-Cheng Lai ®14"

Closed loop operation:
a self-evolving Input layer
dynamical system
during predicting

Output layer

Hidden layer

A digital twin for predicting the state
evolution of nonlinear dynamical systems!

L.-W. Kong, Y. Weng, B. Glaz, M. Haile, and Y.-C. Lai, “Reservoir computing as
digital twins of nonlinear dynamical systems,” Chaos 33, 033111, 1-21 (2023)



Reservoir Computing for Weak Signal Detection

Input layer Hidden layer Output layer

u(t) r(t) v(t)

* Recurrent neural network architecture
* Input signal is always available: a filtering problem
* A large (usually complex) network in a single hidden layer

Z.-M. Zhai, M. Moradi, L.-W. Kong, and Y.-C. Lai, “Detecting weak physical signal from noise: A machine-learning
approach with applications to magnetic-anomaly guided navigation,” Physical Review Applied 19, 034030, 1-18 (2023).



Reservoir Computing: Representative Results
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Machine-Learning Scheme 2: Time-Delayed Feed Forward Neural Networks %‘

Input layer

u(t)

u(t—1)

u(t —mr)

Hidden layer

Output layer

v(t)

* A few hidden layers, each with a small neural
network

* Memory property realized by delay-
coordinate embedding

* High computational efficiency

ARTICLE
Next generation reservoir computing

Daniel J. Gauthier® 2® Erik Bollt>#, Aaron Griffith@® ! & Wendson A. S. Barbosa® '

NS | (2021)12:5564 | https://doi.org/10.1038/s41467-021-25801-2



Time Delayed Feed Forward Neural Networks

(b) A train

5 ®  validation

A

Determining the embedding dimension %
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Results from Time-Delayed Feed Forward Neural Networks
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An Alternative Machine-Learning Approach

Fsi

Example of features: TABLE L. Importance ranking of the features selected by a
A Decision Tree greedy algorithm
Features | Units Description
flux_c_t nT Flux C: fluxgate total
cur_ac_lo A Current sensor: air conditioner fan low
ins_alt m INS computed elevation
flux_c_z nT Flux C: fluxgate z axis
flux_a_t nT Flux A: fluxgate total
vol_back_p \% Voltage sensor: resolver board(+)
vol_back_n \% Voltage sensor: resolver board(-)
ins_lat rad INS computed latitude
cur_com_1 A Current sensor: aircraft radio 1
flux_c_y nT Flux C: fluxgate y axis
vol_acpwr A% Voltage sensor: aircraft power
ins_wander| rad INS computed wander angle
cur_flap A Current sensor: flap motor
vol_bat_2 A Current sensor: battery 2
ins_roll deg INS computed aircraft roll

Labels: a large collection of possible values of the weak signal (to be
detected) in a suitable range (values in the training set + random values)

Parameters to be trained:

F,E,F, ..




Random Forest %

Input Random Forest:
* An ensemble of decision trees;
* Each tree is trained using a different subset of data

Training:

* Training a tree with a randomly selected set of
features and a fraction of the available training data;

* Adding the trained tree to the “Forest”

st ecision s Decision.N * Adding more trained trees to the “Forest”
Random Forest Prediction:
. , * Combining all predictions from the trees in the
Majority Averaging . 59
Forest
Output

A. Moradi, Z.-M. Zhai, A. Nielsen, and Y.-C. Lai, “Random forest for accurate detection
of weak physical signals,” working paper (2023)



Parameter Tracking

A chaotic food-chain
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K=? or K(t)=7?

Inverse Problem



z
-
Q
=
O
et
>
72]
<

=

=

5

o

=

~—

Machine Learning wi

Ongoing Work

%)
g g
[ S Q8
= = w
P S o
TE OS2
m < L=
I en
NS 5228 § 3
S (an) SR mo m m,.b ~
S 8 wE=2 55524
0 = SO NG & RES
g 9 o m S Y no o
S 2 o = E0 PEEEZ
o D v 8 g g = g
s & & S g5>9 § wE
aWE = 55 Sw EE8 &
N=m &% g3 &
p— - MM Z 1 MM \,1rll|l.—lllllllll|_.lll Mmy
———— i 1 Il_l llllllll i —
p— e e I - csaea
s LN e i ¥
s B e [ N ——
...... — | L gt !
s e R =R I A 2~ b I 2w
nnnm_.unluuuﬁnnnn.fy [ [
—omsesne. Wil 2 I &S
= e A I 1=
S e 1 I 9 1 < I—ale
s e I I b o LR
1 — . I 1 < |
=T ] [ I D 0
— —— ] = 1 i, 2 |1 |----- .. 1|l i]je
—
=] _ o0 =
' G N .m e
L, = »
< =) o
= & S 2
() [ W = 0 e
o O < N =
wn Q = @ .. .=
S 5 7 R
o 9 " < £ a
m > > > [ m
© g M [P] =}
= = 7 9
9 (e
= . =
<P a ] [a @)
z > 5 J
S 3 2 : &
_ lm o £
[l Il
- O xlﬁ| B
o d o D d / o ) d \
G
S S
(0]
= 2 L =3
5 8 = >
0~ ™ +~ W




Machine-Learning Strategy - Training %

Observations from a small number of distinct parameter values
can be collected in a well-controlled, laboratory environment WWM W\)\AMMM Parameter value K.
2

Training Machine-
- Laboratory calibration learning input
Learning goal
.00 v \ error
098 o u X y o
—{ Process ]—[ Observer ]——» Reservoir e )
0.96 FRAN
M T
0.94 -
0.92 = G = == = =D
0.90

3500 4000 4500 5000
t



Machine-Learning Strategy: Testing or Deployment

During testing or deployment:

Parameters are no longer accessible
Their variations are unknown

Partial state observations are available — machine-learning inputs

Fsi

Machine-learning output:
Time variations of the
parameter

‘ Reservoir

kbbbl

Machine-learning input

|
( ] o
L computing J ~7 \\,/ \ | \\
V) §

Machine-learning scheme: Adaptable Reservoir Computing — Why?




Conclusion %

* The relation between the error in the detected earth’s anomaly magnetic field and positioning precision is nonlinear.
* An error below 6.5 nT corresponds to the positioning error of less than 45 m.
* Empirically, the position error is approximately about 10 - 40 m when the magnetic signa error is around 4 nT.

* The mean magnetic signal errors from both reservoir computing and time-delayed feed forward neural networks is
about 4 nT

* The anomaly field detected by reservoir computing and feedforward neural networks can be used for actual aircraft
navigation positioning.

* Alternative machine-learning method: Random Forest

Ongoing work:

Developing Transfer Learning methods to deal with the situations where tail stinger measurements are not
available - collaboration with Dr. Aaron Nielsen from Air Force Institute of Technology




K = Constant: Parameter Identification %‘

* Least squares fitting — e.g., E. W. Weisstein, Least squares fitting, https://mathworld.wolfram.com/ (2002)

* Maximum likelihood estimation — e.g., J.-X. Pan and K.-T. Fang, Maximum likelihood estimation, pp. 77-158
in Growth Curve Models and Statistical Diagnostics (Springer, 2002)

* Bayesian estimation — e.g., A. J. Haug, Bayesian Estimation and Tracking: A Practical Guide (John Wiley &
Sons, 2012)

* Genetic algorithm —e.g., L. Yao and W. A. Sethares, Nonlinear parameter estimation via the genetic algorithm,
IEEE Trans. Signal Proc. 42, 927 (1994)

* Neural networks —¢.g., P. Guo, M. R. Lyu, and C. L. P. Chen, Regularization parameter estimation for
feedforward neural networks, IEEE Trans. Sys. Man Cyber. B 33, 35 (2003)

* Markov chain Monte Carlo — e.g., F. Yandun, M. Torres-Torriti, and F. Auat Cheein, Markov chain Monte
Carlo parameter estimation for nonzero slip models of wheeled mobile robots: A skid steer case study, J. Mech.
Robot. 13 (2021)

« Kalman filter —e.g., G. Evensen, The ensemble Kalman filter for combined state and parameter estimation,
IEEE Cont. Sys. Mag. 29, 83 (2009); L. Ljung, Asymptotic behavior of the extended Kalman filter as a
parameter estimator for linear systems, IEEE Trans. Auto. Cont. 24, 36 (1979).



Time-Varying Parameter K(t): Parameter Tracking %‘

Machine-learning methods:

Y. Chen and Y. Zhou, Machine learning based decision making for time varying systems: Parameter
estimation and performance optimization, Knowledge-Based Sys. 190, 105479 (2020).

Y. Zhang, Neural network algorithm with reinforcement learning for parameters extraction of
photovoltaic models, IEEE Trans. Neural Net. Learning Sys. (2021).

A. B. Abdusalomov, F. Safarov, M. Rakhimov, B. Turaev, and T. K. Whangbo, Improved feature
parameter extraction from speech signals using machine learning algorithm, Sensors 22, 8122 (2022).
J. Hannink, T. Kautz, C. F. Pasluosta, K.-G. Gabmann, J. Klucken, and B. M. Eskofier, Sensor-based
gait parameter extraction with deep convolutional neural networks, IEEE J. Biomed. Health Info. 21,
85 (2016).

X. Chen, Y. Tian, T. Zhang, and J. Gao, Differential evolution based manifold gaussian process
machine learning for microwave filter's parameter extraction, IEEE Access 8, 146450 (2020).
M.-Y. Kao, F. Chavez, S. Khandelwal, and C. Hu, Deep learning-based BSIM-CMG parameter
extraction for 10-nm finfet, IEEE Trans. Elec. Dev. 69, 4765 (2022).

Limitation: full-state measurements — time series of all dynamical variables of the system are required



