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Magnetic Navigation - An Alternative to GPS Navigation

• Robust aerial navigation without GPS is challenging;
• Alternative navigation systems for airborne use are often 

limited by where and when they can operate (e.g., terrain 
following systems cannot operate over oceans; star-
tracker and computer-vision systems depend on weather 
and daylight)

• The Earth’s magnetic anomaly field is globally available 
at all times, which has the potential to overcome many of 
the limitations and can be exploited for non-GPS based 
aerial navigation.

Dr. Aaron Canciani, AFIT Dr. John Raquet, AFIT
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Earth’s Magnetic Field

Generated from inside the earth:

• Core field - 20-60 mT: dominant, responsible for the working of 
compasses

• Anomaly field - about 100 nT:  due to the permanent or induced 
magnetization of the rocks in the earth's crust

Key feature of the anomaly field:

• The strength of the anomaly field depends on the location –
possible for positioning and navigation

• When collected from, e.g., an airplane, the anomaly field is 
effectively a time series signal

Generated outside of the earth:

• Temporally varying field - about 10 nT: from the ionosphere, 
magnetosphere, and the coupling currents between the two

NASA Earth Observatory, “Measuring Earth’s Magnetism,” 2014.
https://earthobservatory.nasa.gov/images/84266/
measuring-earths-magnetism

U.S. Geological Survey, “Magnetic anomaly maps and data for North
America,” 2021. https://mrdata.usgs.gov/magnetic/



How to Obtain the Earth Magnetic Field 𝐵! from Aircraft Measurements?

Total measured field: 𝐵! = 𝐵" + 𝐵#$%&%#'( = 𝐵&)%" + 𝐵#*)!#+, + 𝐵(- + 𝐵#$%&%#'(

• 𝐵&)%" - calculated from the International Geomagnetic Reference Field (IGRF) coefficients
• 𝐵(- - mostly from the diurnal variations and space weather – can be removed using ground-based 

reference measurements
• 𝐵#$%&%#'(- total field generated by the aircraft

• Calibration: Tolles-Lawson (TL) model 
to estimate 𝐵#$%&%#'(

• Applied to the reading of the 
magnetometer at the tail stinger → real 
value of the earth field 𝐵"

• Subtracting 𝐵&)%" and 𝐵(- from 𝐵" gives 
the anomaly field 𝐵#*)!#+,



Tolles-Lawson Model

TL model: the magnetic field generated by the body of the aircraft as three magnetic moments:

1. Permanent magnetic moment: the nearly constant magnetic moment of the entire aircraft.
2. Induced magnetic moment: the magnetic response of the magnetically susceptible materials in the aircraft to the earth 

magnetic field. 
3. Eddy current moment: caused by the temporal variations of the earth magnetic field due to the motion of the aircraft.

• 𝑥., ⋯ , 𝑥./: 18 constant coefficients that can be 
calculated after a calibration flight

• TL model works well only when the flying aircraft 
is in a magnetically quiet mode and all the 
magnetometer measurements are performed on a 
tail stinger outside the cabin

• Often this is not the case! 



Estimate of Earth’s Anomaly Magnetic Field

• Recall: 
𝐵" = 𝐵&)%" + 𝐵#*)!#+, + 𝐵(-

• TL calibration gives an estimate of 𝐵":
*𝐵" = 𝐵",12

• 𝐵&)%" - calculated with the International Geomagnetic Reference Field (IGRF) coefficients
• 𝐵(- - mostly from the diurnal variations and space weather – can be removed using ground-based 

reference measurement

→ 𝐵#*)!#+, ≈ 𝐵",12 − 𝐵&)%" − 𝐵(-

• TL calibration works well only when the flying aircraft is in a magnetically quiet mode and all the 
magnetometer measurements are performed on a tail stinger outside the cabin.

• For normal flights, these conditions are not met. 
• Magnetic signals collected inside the cockpit are noisy due to the electronics – a weak signal 

embedded in overwhelmingly strong noise!
• Use TL model to obtain the ground truth for training neural networks



Data Source: USAF-MIT Artificial Intelligence Accelerator



Data Structure

• Source: Open Call for developing machine-learning approaches to signal enhancement for magnetic navigation 
(MagNav) Challenge organized in 2020 by the Air Force-MIT Artificial Intelligence Accelerator

• Four other magnetometers placed at different positions in the cabin
• 45 available flight lines

github.com/MIT-AI-Accelerator/MagNav.jl

Examples of results from TL calibration:



Examples



Additional Features Collected During Flight

61 other features recorded at the same time by some current and voltage sensors and readings from the INS system

Examples 
of some 
“most 
important” 
features:

Fluxgates B, C, 
D along 𝑥, 𝑦, and 
𝑧 axes have been 
used in TL 
calibration (Air 
Force – MIT 
MagNav
Challenge)

• Z.-M. Zhai, M. Moradi, L.-W. 
Kong, and Y.-C. Lai, “Detecting 
weak physical signal from noise: 
A machine-learning approach 
with applications to magnetic-
anomaly guided navigation,” 
Physical Review Applied 19, 
034030, 1-18 (2023). 



Example of Estimated Earth’s Magnetic Field Map in a Flying Region

github.com/MIT-AI-Accelerator/MagNav.jl

Units: nT

𝐵",12:



Additional Features – How Many are Needed?

Determining the number of 
features as additional input 
signals (greedy algorithm)



Machine Learning Scheme 1: Reservoir Computing

Controller:
• Driving
• A bifurcation parameter 𝑝
• Drift due to climate change

⋮

A digital twin for predicting the state 
evolution of nonlinear dynamical systems!

4/7/2019 Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication | Science
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L.-W. Kong, Y. Weng, B. Glaz, M. Haile, and Y.-C. Lai, “Reservoir computing as 
digital twins of nonlinear dynamical systems,” Chaos 33, 033111, 1-21 (2023)



Reservoir Computing for Weak Signal Detection

• Recurrent neural network architecture
• Input signal is always available: a filtering problem
• A large (usually complex) network in a single hidden layer

Z.-M. Zhai, M. Moradi, L.-W. Kong, and Y.-C. Lai, “Detecting weak physical signal from noise: A machine-learning 
approach with applications to magnetic-anomaly guided navigation,” Physical Review Applied 19, 034030, 1-18 (2023). 



Reservoir Computing: Representative Results

Neural network size



Machine-Learning Scheme 2: Time-Delayed Feed Forward Neural Networks

• A few hidden layers, each with a small neural 
network

• Memory property realized by delay-
coordinate embedding

• High computational efficiency



Time Delayed Feed Forward Neural Networks

Determining the embedding dimension



Results from Time-Delayed Feed Forward Neural Networks



An Alternative Machine-Learning Approach

𝐹. > 1𝐹.

……………

𝐹3 > 1𝐹3𝐹3 > 1𝐹3

Labels: a large collection of possible values of the weak signal (to be 
detected) in a suitable range (values in the training set + random values)

Y N

YY NN

A Decision Tree

𝐹4 > 1𝐹4 𝐹4 > 1𝐹4 𝐹4 > 1𝐹4 𝐹4 > 1𝐹4

Example of features:

Parameters to be trained:
1𝐹., 1𝐹3, 1𝐹4, …



Random Forest

Input

Output

Majority Averaging

Tree-1 Tree-2 Tree-N

Decision-1 Decision-2 Decision-N

Random Forest

Random Forest:
• An ensemble of decision trees;
• Each tree is trained using a different subset of data

Training:
• Training a tree with a randomly selected set of 

features and a fraction of the available training data;
• Adding the trained tree to the “Forest”
• Adding more trained trees to the “Forest”

Prediction:
• Combining all predictions from the trees in the 

“Forest”

A. Moradi, Z.-M. Zhai, A. Nielsen, and Y.-C. Lai, “Random forest for accurate detection 
of weak physical signals,” working paper (2023)



Parameter Tracking

K = ?   or K(t) = ?
Inverse Problem

A chaotic food-chain



Ongoing Work: Machine Learning with Partial Measurements

Full 
state of 
the 
system

𝒚 – lower-dimensional 
observation vector

Parameter as 
a function of 
time

Machine-learning 
scheme: reservoir 
computing

Zheng-Meng Zhai, 
Mohammadamin Moradi, 
Bryan Glaz, Mulugeta Haile, 
and Ying-Cheng Lai, 
“Tracking parameter variations 
in nonlinear dynamical systems 
using machine learning,” 
preprint (2023)



Machine-Learning Strategy - Training

Assumption: 
Observations from a small number of distinct parameter values 
can be collected in a well-controlled, laboratory environment

Parameter value 𝐾.

Parameter value 𝐾3

Training
- Laboratory calibration

Machine-
learning input

Learning goal



Machine-Learning Strategy: Testing or Deployment

During testing or deployment:
• Parameters are no longer accessible
• Their variations are unknown
• Partial state observations are available – machine-learning inputs

Machine-learning input

Machine-learning output: 
Time variations of the 
parameter

Machine-learning scheme: Adaptable Reservoir Computing – Why?

Reservoir 
computing



Conclusion

• The relation between the error in the detected earth’s anomaly magnetic field and positioning precision is nonlinear. 

• An error below 6.5 nT corresponds to the positioning error of less than 45 m. 

• Empirically, the position error is approximately about 10 - 40 m when the magnetic signa error is around 4 nT.

• The mean magnetic signal errors from both reservoir computing and time-delayed feed forward neural networks is 
about 4 nT

• The anomaly field detected by reservoir computing and feedforward neural networks can be used for actual aircraft 
navigation positioning.

• Alternative machine-learning method: Random Forest

Ongoing work: 

Developing Transfer Learning methods to deal with the situations where tail stinger measurements are not 
available - collaboration with Dr. Aaron Nielsen from Air Force Institute of Technology



K = Constant: Parameter Identification

• Least squares fitting – e.g., E. W. Weisstein, Least squares fitting, https://mathworld.wolfram.com/ (2002)
• Maximum likelihood estimation – e.g., J.-X. Pan and K.-T. Fang, Maximum likelihood estimation, pp. 77-158 

in Growth Curve Models and Statistical Diagnostics (Springer, 2002)
• Bayesian estimation – e.g., A. J. Haug, Bayesian Estimation and Tracking: A Practical Guide (John Wiley & 

Sons, 2012)
• Genetic algorithm – e.g., L. Yao and W. A. Sethares, Nonlinear parameter estimation via the genetic algorithm, 

IEEE Trans. Signal Proc. 42, 927 (1994)
• Neural networks – e.g., P. Guo, M. R. Lyu, and C. L. P. Chen, Regularization parameter estimation for 

feedforward neural networks, IEEE Trans. Sys. Man Cyber. B 33, 35 (2003)
• Markov chain Monte Carlo – e.g., F. Yandun, M. Torres-Torriti, and F. Auat Cheein, Markov chain Monte 

Carlo parameter estimation for nonzero slip models of wheeled mobile robots: A skid steer case study, J. Mech. 
Robot. 13 (2021)

• Kalman filter – e.g., G. Evensen, The ensemble Kalman filter for combined state and parameter estimation, 
IEEE Cont. Sys. Mag. 29, 83 (2009); L. Ljung, Asymptotic behavior of the extended Kalman filter as a 
parameter estimator for linear systems, IEEE Trans. Auto. Cont. 24, 36 (1979).



Time-Varying Parameter K(t): Parameter Tracking

Machine-learning methods:

• Y. Chen and Y. Zhou, Machine learning based decision making for time varying systems: Parameter 
estimation and performance optimization, Knowledge-Based Sys. 190, 105479 (2020).

• Y. Zhang, Neural network algorithm with reinforcement learning for parameters extraction of 
photovoltaic models, IEEE Trans. Neural Net. Learning Sys. (2021).

• A. B. Abdusalomov, F. Safarov, M. Rakhimov, B. Turaev, and T. K. Whangbo, Improved feature 
parameter extraction from speech signals using machine learning algorithm, Sensors 22, 8122 (2022).

• J. Hannink, T. Kautz, C. F. Pasluosta, K.-G. Gabmann, J. Klucken, and B. M. Eskofier, Sensor-based 
gait parameter extraction with deep convolutional neural networks, IEEE J. Biomed. Health Info. 21, 
85 (2016).

• X. Chen, Y. Tian, T. Zhang, and J. Gao, Differential evolution based manifold gaussian process 
machine learning for microwave  filter's parameter extraction, IEEE Access 8, 146450 (2020).

• M.-Y. Kao, F. Chavez, S. Khandelwal, and C. Hu, Deep learning-based BSIM-CMG parameter 
extraction for 10-nm finfet, IEEE Trans. Elec. Dev. 69, 4765 (2022).

Limitation: full-state measurements – time series of all dynamical variables of the system are required 


