

PNI Sensor's Magneto-Inductive Technology

Presented by Jay Trojan Joe Miller

About PNI Sensor

- PNI is a positioning and navigation product and technology company that provides highly accurate, precise position and navigation data to systems using proprietary sensors, algorithms and Edge AI
- Headquartered in Santa Rosa, California
 - > PNI manufactures its magnetometers in Santa Rosa
- > Technology includes:
 - High-performance magnetic sensors
 - Location and motion coprocessors
 - Military-grade sensor modules
 - Edge AI and sensor fusion algorithms
 - Complete sensor systems

Applications

Customers

PNI's technology is used by leading, global organizations in applications where a high degree of accuracy, continuous reliability, and low power consumption are required.

ULTRA

Products and Technologies

Magnetic Sensors

DMC/AHRS/IMU Modules **APNT Modules**

Algorithm/Edge Al Software

High Sensitivity
Low Noise
No Bias Drift

Commercial

<13nT noise

RM3000 RM3100

Military

<7nT noise

Midas SENR

Custom

Formula one Torque sensor SEN QT

Targeting Modules Headway

TargetPoint3
TargetPoint SX
TargetPoint TCM

Digital Magnetic compasses

PrimePro SeaTrax3

AHRS

Trax2 Headway NaviGuider

FORT

Self-contained Dismounted Soldier Tracker Pedestrian Dead Reckoning

Location Algorithm

Indoor and outdoor location Fusion of sensor location, GPS and RF beacons

Sensor Fusion Algorithms

Configurable 15 state Kalman filter

Magnetic Interference rejection

Kalman filter
Background Autocalibration
ML Continuous Calibration

Sensor Fusion

Coprocessors

Lowest power ASIC with embedded sensor fusion algorithms

Vehicle Detection

Magnetic signaturing Edge AI

RM3100 Magnetometer Sensor

- Low Noise: $1.2nT/\sqrt{Hz}$ typical
- High linearity: 0.5% ±200uT
 - Calibrated out at PNI factory for modules
- Field Range: ±800uT
- Low current: Down to 70uA at 8Hz
- Output is inherently digital (No internal or external ADCs)
- One MagI2C measures 3 sensors for a 3-axis vector output

RM3100 System Circuitry

- Small circuit footprint: 160mm²
- I2C or SPI digital interface
- Operating range of 2V to 3.6V

Noise Density

Noise Floor

- Noise floor of 4pT/rt-Hz @ 1Hz by performing a fast Fourier transform of the autocorrelation function of the measured signal¹
- 8.7nT @ 40Hz and 2.7nT@ 1Hz

¹Source: Regoli, L. H., Moldwin, M. B., Pellioni, M., Bronner, B., Hite, K., Sheinker, A., and Ponder, B. M.: **Investigation of a low-cost magneto-inductive magnetometer for space science applications**, Geosci. Instrum. Method. Data Syst., 7, 129–142, https://doi.org/10.5194/gi-7-129-2018, 2018.

Noise Distribution

 \bar{x} 14.8nT-RMS σ 3.4nT-RMS 99% 24nT-RMS

Permeability (µ) of Magnetic Material

Properties

- Permeability (μ) is the first derivative of a materials B/H curve
- As magnetic field increases μ decreases
- Inductance of an inductor with a magnetic core is proportional to μ

$$L \equiv \mu_0 + \mu_r$$

Typical μ_r curve of a core material

L/R Relaxation Oscillator

Attributes

> L (sensor) Has a DC bias current

$$\rightarrow f = k \frac{R}{L}$$

$$\succ \tau = k \frac{L}{R}$$
 (τ proportional to L)

Schematic

RM3100 Sensor - A field dependent Inductor

Attributes

- Saturable-core Inductor
- relaxation oscillator magnetizes and partially saturates the core. An external field in the sensors sensitive axis increases or reduces the amount of saturation.

Simplified Schematic

Quasi-Differential Measurement

Means

- Electronically transposes the sensors electrical direction in the circuit
- > The output period of oscillation yields a τ_P and τ_N

Transposed Signal Math

Analysis

- \triangleright Subtracting τ_P from τ_N
- $\succ \tau_t = \tau_P \tau_N$
- $\tau_t = (\tau_{H_{IP}} + \tau_{HE}) (\tau_{H_{IN}} \tau_{HE})$
- \triangleright Since: $H_{IP} = H_{IN}$ then
- $\rightarrow \tau_t = 2\tau_{HE}$
- \succ Temperature effects on the $\tau_{H_{IN}}$ and $\tau_{H_{IN}}$ portions cancel

Practical Observations

Temp Response on a Board

- Not quite all temperature error cancels out, especially in practical applications in a larger system
- > The primary causes of temperature error are clock timing and residual inductance thermal dependencies
- Most of this can be removed with linear corrections, often common coefficients depending on application
- > PNI uses a non-linear correction in most of its modules for maximum performance
- Z sensor tends to be less impacted than X/Y sensors

	Correction	X	Υ	Z
RM3100 Gain	Raw	0.05 counts/uT/K	0.06 counts/uT/K	0.02 counts/uT/K
(normalized to	Linear Correction	0.006 counts/uT/K	0.005 counts/uT/K	0.003 counts/uT/K
50uT gain)	PNI's Non-Linear	0 counts/uT/K	0 counts/uT/K	0 counts/uT/K
	Correction			
RM3100 Offset	Raw	0.035 uT/K	0.05 uT/K	0.032 uT/K
	Linear Correction	0.016 uT/K	0.022 uT/K	0.0038 uT/K
	PNI's Non-Linear	0.002 uT/K	0.0025 uT/K	0.0011 uT/K
	Correction			

Application Tip

- Oversampling
 - Lessens the effects of CMOS 1/f noise on low bandwidth measurements.
 - Keep measurement integration periods below 2.5ms, which is about 200 oscillator cycles, or Cycle Counts (CC). 1.5ms, or 125CC is ideal for very long total measurement intervals
- Run only one sensor axis per MagI2C controller IC
 - Allows longer sampling integration period.
 Does not have to time share with other axes.
 - All Sensor would oscillate(measure) simultaneously and thus are chronologically correlated.
 - Sensors must be separated, or they will interact.

Sensor Noise with and without Oversampling

