Sensor placement

ION MagNav Workshop, PLANS 2023, Monterey, CA

Author

Aaron Nielsen

The views expressed in this article are those of the author and do not necessarily reflect the official policy or position of the United States Government, Department of Defense, United States Air Force or Air University.
Distribution A: Authorized for public release. Distribution is unlimited. Case No. 2023-0427.

How-to

There’s a docker container with a jupyter notebook that contains this exercise:

docker run  -p 8888:8888 anielsen/magnav-plans-workshop:latest

Then select work/sensor_placement.ipynb

Cylindrical Dipole magnet

Cylindrical Dipole magnetized along \(z\)



Bolt

Near-field magnetic dipole

You may or may not remember from electromagnetics that the magnetic field from a dipole decays as the inverse cube of the distance from the dipole center \[ B(r) \propto \frac{1}{(r/b)^3} \] See dipole (Griffiths 1999)

This fact is essential for understanding

  1. How to position magnetometers in a vehicle
  2. Essential differences from free-space propagation (e.g. radio waves)
Code
from matplotlib import pylab as plt
import numpy as np

plt.ion();

Sensor placement

Signal decay with distance

  • The power-density of radio-frequency wave propation falls as \(1/r^2\).
    • reflects that energy spreads out over surface of a sphere area \(A=4\pi r^2\)
  • The magnetic field falls as \(1/r^3\).

Differences between \(1/r^3\) and \(1/r^2\)

Code
nx = 1_000
x_max = 100
x_min = 1.0
x_span = x_max - x_min
dx = x_span / nx
x = np.arange(nx)*dx + x_min

y_r2 = 1/x**2
y_r3 = 1/x**3
Code
fig,ax = plt.subplots()
ax.plot(x,y_r2,label=r"$1/x^2$")
ax.plot(x,y_r3,label=r"$1/x^3$")
ax.legend()
ax.set_xlabel("Distance from source")
ax.set_ylabel("Amplitude")
ax.grid();

Figure 1: \(\frac{1}{r^3}\) compared to \(\frac{1}{r^2}\)
Code
fig,ax = plt.subplots()
ax.semilogy(x,y_r2,label=r"$1/x^2$")
ax.semilogy(x,y_r3,label=r"$1/x^3$")
ax.set_ylim([1e-6,1])
ax.legend()
ax.set_xlabel("Distance from source")
ax.set_ylabel("Amplitude")
ax.grid();

Figure 2: \(\frac{1}{r^3}\) compared to \(\frac{1}{r^2}\)
Code
fig,ax = plt.subplots()
ax.loglog(x,y_r2,label=r"$1/x^2$")
ax.loglog(x,y_r3,label=r"$1/x^3$")
ax.set_ylim([1e-6,1])
ax.legend()
ax.set_xlabel("Distance from source")
ax.set_ylabel("Amplitude")
ax.grid();

Figure 3: \(\frac{1}{r^3}\) compared to \(\frac{1}{r^2}\)

For fun add \(e^{-x}\)

Code
y_exp = np.exp(-x)
Code
fig,ax = plt.subplots()
ax.loglog(x,y_r2,label=r"$1/x^2$")
ax.loglog(x,y_r3,label=r"$1/x^3$")
ax.loglog(x,y_exp,label=r"$e^{-x}$")
ax.set_ylim([1e-6,1])
ax.legend()
ax.set_xlabel("Distance from source")
ax.set_ylabel("Amplitude")
ax.grid();

Figure 4: \(\frac{1}{r^3}\) compared to \(\frac{1}{r^2}\) and \(\exp{(-x)}\)

References

Griffiths, David J. 1999. Introduction to Electrodynamics. 3rd ed. Prentice Hall.