The views expressed in this article are those of the author and do not necessarily reflect the official policy or position of the United States Government, Department of Defense, United States Air Force or Air University. Distribution A: Authorized for public release. Distribution is unlimited. Case No. 2023-0427.
How-to
There’s a docker container with a jupyter notebook that contains this exercise:
docker run -p 8888:8888 anielsen/magnav-plans-workshop:latest
Then select work/sensor_placement.ipynb
Cylindrical Dipole magnet
Near-field magnetic dipole
You may or may not remember from electromagnetics that the magnetic field from a dipole decays as the inverse cube of the distance from the dipole center \[
B(r) \propto \frac{1}{(r/b)^3}
\]See dipole(Griffiths 1999)
This fact is essential for understanding
How to position magnetometers in a vehicle
Essential differences from free-space propagation (e.g. radio waves)
Code
from matplotlib import pylab as pltimport numpy as npplt.ion();
Sensor placement
Signal decay with distance
The power-density of radio-frequency wave propation falls as \(1/r^2\).
reflects that energy spreads out over surface of a sphere area \(A=4\pi r^2\)
fig,ax = plt.subplots()ax.plot(x,y_r2,label=r"$1/x^2$")ax.plot(x,y_r3,label=r"$1/x^3$")ax.legend()ax.set_xlabel("Distance from source")ax.set_ylabel("Amplitude")ax.grid();
Code
fig,ax = plt.subplots()ax.semilogy(x,y_r2,label=r"$1/x^2$")ax.semilogy(x,y_r3,label=r"$1/x^3$")ax.set_ylim([1e-6,1])ax.legend()ax.set_xlabel("Distance from source")ax.set_ylabel("Amplitude")ax.grid();
Code
fig,ax = plt.subplots()ax.loglog(x,y_r2,label=r"$1/x^2$")ax.loglog(x,y_r3,label=r"$1/x^3$")ax.set_ylim([1e-6,1])ax.legend()ax.set_xlabel("Distance from source")ax.set_ylabel("Amplitude")ax.grid();
For fun add \(e^{-x}\)
Code
y_exp = np.exp(-x)
Code
fig,ax = plt.subplots()ax.loglog(x,y_r2,label=r"$1/x^2$")ax.loglog(x,y_r3,label=r"$1/x^3$")ax.loglog(x,y_exp,label=r"$e^{-x}$")ax.set_ylim([1e-6,1])ax.legend()ax.set_xlabel("Distance from source")ax.set_ylabel("Amplitude")ax.grid();
References
Griffiths, David J. 1999. Introduction to Electrodynamics. 3rd ed. Prentice Hall.